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Abstract-A variational upper bound principle is used to derive equations for the Knudsen void gas 
thermal conductivity in three model fiber beds made up of randomly placed, freely overlapping, long right 
circular cylinders with their central axes mutually parallel, with each cylinder axis independently oriented 
in two dimensions or with each axis independently oriented in three dimensions. In order to establish the 
importance ofdispersed solid shape and spatial distribution in predicting the low pressure gas conductivities 
in cryogenic insulation, the five fiber bed conductivities are compared with sphere bed and parallel plate 

Knudsen thermal conductivity equations for various values of the thermal accommodation coefficient. 

INTRODUCTION 

KNUDSEN transport occurs either at low pressures, or 
within the void space of a finely dispersed solid at 
normal pressures. Under these conditions the average 
distance between successive molecule-wall surface 
collisions is much smaller than the molecular mean 
free path, molecule-molecule collisions become 
unlikely and can be neglected. Gas heat conduction 
in cryogenic insulation, where the insulator space is 
usually evacuated and filled with a dispersed solid [1], 
is often in the transition or the Knudsen regime [2] 
and a knowledge of the Knudsen void gas thermal 
conductivity is needed for design considerations. 
Cryogenic insulation technology is important for 
natural gas upgrading and storage [3], liquid oxygen 
production, as well as the minimization of evap- 
oration losses in space flight [4]. The low pressure 
Knudsen void gas conductivity k,, is commonly rep- 
resented by an equation of the type 

with 

kKn (PS) = Cd [a/(2 -a)l, (la) 

2C= k$(y+l)/(‘j--1) (lb) 

and 

$ = I%_l(4kT) UC) 

In equations (la)-(lc), k is the Boltzmann constant 
and y is the heat capacity ratio C,/C,. The effusive 
driving force $, a constant across the cryogenic insu- 
lation, is customarily evaluated at an average pressure 
p, average temperature 7, and associated mean ther- 
mal speed 8. The values [2] of the thermal accom- 
modation coefficient c( run from 0.0151 for He on 
clean tungsten at - 190°C up to 1.0 for H, on glass 

tAuthor to whom correspondence should be addressed. 

at - 170°C. Equation (1) is derived for parallel sur- 
faces (PS model) [5, 61, where 6 represents the plate 
spacing. Its application to other void-solid geometries 
is ad hoc, e.g. for cryogenic foam insulation 6 is 
assigned to be the average cell size [4] and for dis- 
persed solids 6 is taken to be the average pore diameter 
[7] (4xvoid volume divided by the dispersed solid 
surface area). Any rigorous form of the Knudsen ther- 
mal conductivity, dominated by wall interactions, will 
be sensitive to the structure of the void space. 

In a recent paper [8], a variational principle for the 
thermal conductivity of a void-solid suspension of 
arbitrary geometry with Knudsen gas conduction in 
the void space was formulated, and applied to a bed 
of randomly placed, freely overlapping solid spheres 
all of the same radius (OS model). If 6 for the OS 
model is the average pore diameter (4 x void volume 
divided by the dispersed solid surface area), the result- 
ing variational equation for the Knudsen void gas 
conductivity from ref. [8] is 

kc, (0s) = Ca[ ,+;;_,,] 
Equation (2) was shown to be the exact form of kKn 

at high void fraction for both a-+0 or a+ 1, and agreed 
well with other approximate results [9] between these 
limits. The expression (2) also provided a rigorous 
upper bound on the Knudsen void gas conductivity 
for any lower void fraction. It has been demonstrated 
[8-l l] that randomly overlapping spheres serve as an 
appropriate structure in which aspects of low pressure 
and radiation heat transport in random particulate 
dispersions can be displayed. That values of kJ(GC) 

from equation (2) always lie above those of equation 
(1) in Fig. 1 illustrates the influence of void-solid 
geometry on kKn and suggests in general the use of 
equation (1) will significantly underestimate the 
Knudsen gas thermal conductivity. 
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NOMENCLATURE 

u fiber radius 
A defined in equation (6) 

A, area in thej plane perpendicular to the 
fiber central axis w,. 

A,,, defined in equation (3a) 
c defined in equation (1 b) 

CM defined in equation (3b) 
d2r differential element of surface 
d’r, d”p differential elements of volume 
E surface energy &Iux 
E(m) complete elliptic integral of the second 

kind 

9 general function used in definition 

(15) 
G definite integral defined by equation 

(28) 
G, definite integral defined by equation 

(29) 
i unit vector across the slab from x = 0 

to L 

k the Boltzmann constant 
ko, k,, k,, k, defined by equations (20)-(23) 
k K” Knudsen void gas conductivity 
k 

k:” 
effective conductivity 
solid conductivity 

K(r’,r)d’r differential view factor between 
two surface points 

L slab thickness 
density of fiber centers of radius a per n/ 
unit area in thej plane 

P, probability that no circle center lies 
within an area A, in thej plane 

P average pressure 
r location vector in either E or V, 
s total void-solid interface area per unit 

slab volume 
T temperature 
F average temperature 
i; mean thermal speed 
V total volume of the bed 

V, total solid volume 

v+ total void volume 
.Y coordinate across slab. 

Greek symbols 
x fiber surface thermal accommodation 

coefficient 

7 heat capacity radio, CJC,, 
Y 

Y&j angular variables for cylinder 
orientation 

6 average pore diameter of fiber bed, 
4@.ls 

E fiber surface emissivity 
fiber surface unit normal 

Z temperature gradient defined by 
equation (8a) 

1 variational parameter 

Aopt optimal value of 1 

P displacement vector, r’ - r 

P/ the projection of the vector p onto the 
I plane 

(T Stet‘an-Boltzmann constant 

0; total surface area of cylinders with 
orientation 0, 

c surface area 
@ void fraction 

li, effusive driving force, p~/4kT 

a, unit vector that gives the direction of 
the central axis of a cylinder. 

Subscripts 
eff effective bed property 

j cylinders with central axis in the 
direction wj, and quantities in the 
correspondingj plane perpendicular to 

0, 
Kn Knudsen void gas 

ends of the slab 0, L 
Rad radiation 

solid 

; void. 

Superscript 
* trial functions for variational principle 

(5). 

Operations 
(. .) surface average defined by equation 

(15). 

and treat another solid dispersion of importance in 
To further examine the structural sensitivity of kKn 

cryogenic technology [1], in this paper variational 
equations for the Knudsen conductivity will be 
derived for a number of model fiber beds made up of 
randomly placed, freely overlapping, long right cir- 
cular cylinders with three different types of orien- 
tations--central axes mutually parallel (POC model) ; 
central axes oriented mutually at random, but with 
parallel vectors of rotation, i.e. parallel planes of 
rotation (PROC model); and central axes of each 
cylinder given an independent orientation, i.e. iso- 

that the vafues kK,/(6C) for the various principal axis 
directions within each of the random fibrous solid 

tropic in three dimensions (IOC model). We will show 

beds considered will always lie well above equation 
(1) and at or below the constant conductivity 2.47 for 
one-dimensional transport parallel down along the 
central axes of the POC model, i.e. k,,(POCII) = 
6C??/4. 

Barron [12] has pointed out that the Knudsen gas 
thermal transport equations are often of the same 
form as those of radiation transport. Wolf ef al. [S] 
have shown that with the exchanges 
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FIG. 1. Plots of the dimensionless Knudsen void gas thermal 
conductivities .&,,/(Ca) vs thermal accommodation co- 
efficient, G(, for various dispersed solid geometries. (iJ Flux 
across the parallel surfaces model, equation (1). 0 OS, three- 
dimensional isotropic bed of spheres, equation (2). (7J POCII, 
flux down the fiber axes, equation (24). @I POCK, flux 
perpendicular to the fiber axes, equation (26). @ PROCII, 
flux parallel to the planes of fiber rotation, equation (26). @ 
PROCI, flux perpendicular to the planes of fiber rotation, 
equation (26). (7J IOC, three-dimensional isotropic fiber bed, 

equation (26). 

A Rad = -3o?“+, 

CRad = 4oF3, 

(3a) 

(3b) 

and 

c( = E, (3c) 

where E is the particle surface emissivity, 7 is the 
average of the edge temperatures and 0 is the Stefan- 
Boltzmann constant, the kKn void gas variational prin- 
ciple and the resulting conductivity equations will give 
the equivalent void radiation conductivities kRad. As 
these random fiber bed models have already been used 
to address the mass transport [13,14], the kRad equa- 
tions will be useful to model the accompanying radi- 
ation heat transport (process temperatures above 1200 
K) within the ceramic fiber mat geometries (fiber 
diameters 10-1.50 microns) occurring [ 15, 161 during 
the chemical vapor intrusion processing of ceramic 
reinforced fiber composite materials. 

VARIATIONAL PRINCIPLE 

Consider a very large, thick slab of arbitrary void- 
solid geometry and total volume V extending from 
x = 0 to L. The total volume V is divided into two 
subregions, a region of solid volume V, and void 
region V+,. The interface between these two regions 
makes up the void-solid interface C. We assume that 
gas molecules in the void that strike the surface are 
either reflected diffusely or after energy equilibration 

are diffusely emitted from the surface according to 
the cosine law [17]. Any dependence of the energy 
accommodation coefficient tl on the direction or 
energy of the incident or departing molecules is neglec- 
ted. 

Across the slab a steady temperature difference 
To- TL is maintained. A unit vector i points across 
the slab in the positive x-direction with a thermal 
gradient 

0 = - (To - T,)i/L. (4) 

A knowledge of the energy E(r) of the Knudsen gas 
molecules leaving a unit surface on C located at r per 
unit time both by emission and reflection, the local 
solid temperature T(r) and the solid conductivity k, is 
sufficient to calculate the effective thermal con- 
ductivity k,, of the thick slab from 

d2r’K(r,r’) [E*(r’)-E*(r)]’ 

+i& d’r[E*(r)-A-CT*(r)]’ 
s Z 

+ g d3rk,[VP(r)12. (5) 
s “\ 

The variational principle (S), derived in ref. [8] is listed 
in a form appropriate for radiation of Knudsen void 
gas thermal conduction, and the associated constants 
are given by either equations (3a)-(3c) for radiation, 
or by equations (lb)-(lc) with A for Knudsen con- 
duction equal to zero, 

A = 0 (Knudsen gas thermal conduction). (6) 

The kernel function K(r,r’)d2r is the differential 
view factor for particles diffusely leaving a unit surface 
at r’ on C, and traveling directly to the surface element 
d*r located at r also on C, whereas d’r is a volume 
element located at a point r in V,. Since we are 
assuming diffuse scattering at the surfaces, K is given 
by the cosine law, 

K(r,r’) = K(r’,r) (7a) 

= -[S(r) *PI Mr’) *dl(w4) 

(if r can see r’) (7b) 

= 0 (otherwise). (7c) 

q(r) and q(r’) are unit normals, respectively, at the 
points r and r’ on X pointing into the void, and 
p = (r’-r). 

The asterisk superscript signifies trial forms of E 

and T, whose use in equation (5) produces a vari- 
ational estimate and rigorous upper bound on keR. A 
simple selection for the trial temperature in the fiber 
beds is 

P(r) = T,+B*r. (84 

The trial surface energy efflux equivalent [8] to equa- 
tion (8a) is 

E*(r) = A+CT*+iB-q(r), (8b) 
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and i, is an adjustable parameter. Note that i in equa- 
tion (4) and # in equations (&I) and (Xb) are in the 
direction of the applied thermal gradient which can 
be selected parallel or perpendicular to the various 
alignments of the cylinder axes. 

RANDWILY OVERLAPPING FtBER BEDS 

To model a fibrous material, a large slab of total 
volume V and thickness i. is cut from an infinite bed 
of very long right circular cylinders of’ radius u placed 
at random and allowed to freely overlap. A point lying 
within one or more cylinders is in the solid volume Vs. 
those points that fit outside the cylinders make up 
the void V4 and points on a cylinder surface, not 
overlapped by any other cylinder, are the void-solid 
interface C. The internal structure of the cylinder bed 
depends on their orientations. In addition to the ran- 
dom placement, an orientation o, is assigned to each 
cylinder. The index j sums over a discrete or con- 
tinuous set of orientations. A number of possibilities 
are of interest : 

(a) all cylinders are given the same orientation with 
o, parallel to the i direction across the slab thickness 

(POC II 1; 
(b) all the cylinders are given the same orientation, 

but perpendicufar to the i direction (POCi) ; 
(c) each cylinder is given a random orientation in 

a plane with aff vectors of rotation parallef to i, i.e. 
the fibers are oriented mutually at random per- 
pendicular to the applied thermal gradient (PROCL) ; 

(d) each cylinder is randomly oriented in a plane 
with the planes of rotation all paraflef both to the 
vector i and to each other (PROCJJ) ; and 

(e) the cylinders are oriented isotropically, i.e. each 
cylinder axis is selected independently with any direc- 
tion in three dimensions equally likely (IOC). 

The statistics of a bed of cylinders has been dis- 
cussed elsewhere [ IS,19], but, for the purpose of caf- 
cufation of the variationaf integrals, it suffices to con- 
sider those cylinders with axial orientation vector oi 
and the .j plane per~endicufar to this direction [t8]. 
Those cylinders with orientation oi appear as ran- 
domly overlapping circles of radius LI in the j plane 
with centers randomly placed. The pro~dbifity P, that 
no circle center lies within an area Ai in the plane, can 
be written 2193 in terms of the density n, per unit area 
of circle centers in the,j plane, 

Uj = exp (-n,A,). (9) 

The void fraction CD can be interpreted as the prob- 
ability that a randomly chosen point in the slab falls 
in the void. or the probability that in each given ,j 
pfane no circle has its center within a distance a of 
the random point. Since the j planes are statistically 
independent and from P, of equation (9) 

tf, = exp (-p&) 

where the sunlmation is over any assigned tiber oricn- 
tations of the model. 

The surface area (T,, overlapped or not. 01‘ those 
cylinders with orientation ~2, within a unit total voi- 
ume of the slab is 

“/ = 2riuFl,. (ff) 

From its product with the void fraction (IO), we 
obtain the exposed portion sj, the void-solid interface 
due to the w, cylinders 

s, = o,Q, = 2nan,@, (121 

and the total void-solid interface area s per unit total 
slab volume 

s = Es, = c 2naur,#. (13) 
i i 

For the ease of a dispersed solid. 6 is the average pore 
diameter and by its definition in equations (1) and (2) 

i ) 
-1 

6=4#/s=2 pw2, 
I 

When the trial functions @a) and (Sb) are sub- 
stituted into the variational integrals (5), the integrand 
of the volume integral is a constant. In terms of the 
surface normals 4 (q’) at r (r’) and, p = r’-r, the 
surface integrals are of the general form 

~~t~,~,~‘)) = 

(s@-’ [ d2r j d’r’K(r,r’)g[p,tt(r),tl(r’)l- 0% 
dz: z 

The function 9 in equation (15) can be [i*p6-‘]2, 
[i*pGmL] [is (q-q’)], [i * (q’-q)]” or [i-q]‘. The surface 
integrals also depend on K(r,r’) given by equation (7), 
and, for any arbitrary set (~~3 of cylinder orientations, 
the surface average (1.5) can be written 

x d@i d ‘p exp c [ - Zap,n, 
I 

This equation is derived in ref. [IS] and appears as 
equation (211 in that publication. The integral (16) 
requires a sum without restriction over all possible j, 
k pairs as weft as a separate sum over 1. The projection 
lji of the vector p onto the lth plane can be written 

p, = [p’-(p*fI#]“*. 07f 

The integrations over 8, and 0; are performed over all 
possible angles @-2n. respectively, in thejand k planes 
subject to the respective restrictions p *qj > 0 and 
p+& < 0. The p integration is done over the entire 
slab volume. 
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RESULTS AND DISCUSSION 

Once the trial temperature (8a) and energy efflux 
(8b) are substituted into the variational principle (5), 
an optimal value of R is selected, 

6-‘A,,, = -(I -a) (ko/k,)“* 

x 
[ 

; +(k,/k,)- ;k2 
I 

I*2 
(1 +akJ’. (18) 

We obtain from equations (S), (8a), (8b) and (18) the 

general variational form for the void-solid system 
effective conductivity, valid for an arbitrary dispersion 
geometry, 

The k integrals depend only on the bed micro- 
geometry, and in terms of the surface averages (15) 

ko 
T = ([i*p6p1]2) - 

([i*(rt’-dl [i*&‘I)*, (20) 

<LieW-dl*) 

with 

k, = ([i*pX’]‘) (1+-k*)-k,,, 

k, = ([i- (q’-q)]*)-‘k3 - 1, 

(21) 

(22) 

k, = 2<[i+r11*) (23) 

Note that a knowledge of the values of the four ks is 
sufficient to determine the four different bracketed 
surface averages in equations (20)-(23), and the k 
form (19) of the variational result for k,, is convenient 
for the following discussion. 

(a) POC)). We consider first cylinders placed at 
random with axes mutually parallel and an applied 
gradient also parallel to the cylinder axes. For heat trans- 
fer down a very long channel with a constant cross- 
sectional shape, the temperature profile is both one- 
dimensional and linear. In addition i and the surface 
normal q are always perpendicular, i.e. i * $ = 0, so 
that the bracketed averages (20)-(23) all vanish except 
([i * p&‘]*), which from equation (16) equals x*/8. 
The variational principle (19) then gives, not a 
bounding estimate, but the exact equality 

kcff = @ [C&*/4] + (1 -@)k,. (24) 

The Knudsen thermal conduction and the solid con- 
duction of equation (24) are in parallel, 

ker = @k,,+(l-Q)k,, (25) 

the factors Q, and (1 - @) are cross-sectional area frac- 
tions, respectively, of the void gas and solid, and the 
square bracketed term in equation (24) is the Knudsen 
gas thermal conductivity appropriate to compare with 
the parallel surface conductivity (1). Both the k. and 
the corresponding Knudsen thermal conductivity for 

POC 11 are given in the first row of Table 1. In the 
limit cc+0 the exact solution for the Knudsen thermal 
conductivity becomes mathematically equivalent to 
Knudsen mass diffusion in the same geometry. Knud- 
sen particle diffusion by Monte Carlo simulations 
have been performed numerically by Tomadakes and 
Sotirchos [19] on all the cylinder bed structures in 
Table 1 and the simulation values of k, are given in 
the second column of Table 1. Simulation errors in 
some cases run as high as 2-5%, but the results are in 
excellent agreement. 

For any of the following fiber bed models some 
general comments are useful for the interpretation of 
equation (19). In practice the solid fraction in cryo- 
genic or refrigeration fibrous insulation [20] is very 
low (about 10%). At the same time for the disordered 
materials commonly used for insulation, such as glass, 
the conductivity monotonically drops to zero [21] in 
cryogenic temperature regions (below 200 K). A net 
effect of these circumstances is the solid conductivity 
term in equation (19) can often be neglected in cryo- 
genic applications and thermal conduction occurs 
only in the void gas, 

(26) 

It is reasonable in equation (26) to drop the void cross 
section area factor @ and identify the square bracketed 
term in equation (26) as the variational upper bound 
estimate of the cryogenic Knudsen void gas thermal 
conductivity to be compared with the parallel surface 
form (1). Note at high temperatures that the anal- 
ogous condition of radiation equilibrium [8, 221 per- 
mits the same limit for the radiation kRad version (3a)- 
(3~) of equations (19) and (26). Also the use of the 
linear trial temperature @a) in the solid volume term 
of the variational expression (third term in the right- 
hand side of equation (5)) gives a solid conductivity 
contribution in the parzllel form (25). The other two 
integrals include the surface processes. It has been 
shown [8] that the trial energy efflux form (8b) can be 
derived from and is completely consistent with the 
linear temperature profile in the solid. When a random 
two-phase suspension consists of two Fourier solids, 
the upper bound variational principle with the linear 
trial temperature (8a) gives the parallel bound (25). It 
is interesting to note that the inequality equation (19) 
is also a parallel bound, if we take the square brack- 
eted quantity in equation (19) to be the void Knudsen 
gas conductivity. Finally, note that a plot of keRversus 
k, for fixed ?=, p, c( and void-solid geometry will exhibit 
a single cross over from above to below the 45” dia- 
gional line at the point k, = kc8 = k,,. The application 
of inequality (19) at this point also affirms that the 
square bracketed term in equation (19) is a variational 
upper bound estimate of kKn. These kKn expressions 
for the following random fiber bed geometries are 
listed in the sixth column in Table I and are the Knud- 
sen void gas conductivities appropriate to compare 
with the parallel surface conductivity (1). 
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Table I. Knudsen void gas thermal conductiultles for various cylinder distributions 
___~_ _~~~ .~~~~ _.~ ~~~~~~ ~_~~ ~_~ ~~ _~ ~~~~.~ ~~_ 

h,, k, I<, kz x, ~,,I 
equation (20) Monte Carlo [I91 equation (21) equation (22) equation (23) equation (19) 

fiber axes 4 
2.43 

POC 
flux 1 to 

2n’ 
__ = 0.7630 0.763t 0 

fiber axes 16+7r’ 

PROC 
flux )I to 

8G, * 22 

8+G, 
1.16t 0 

fiber axes 

PROC 
flux i to 

2G0 
~ = 0.7488 

fiber axes l +Go 
0.7491_ 0 

IOC 
12 
E = 0.923 1 0.923t 

6 

13 

t Obtained from ref. [19] in limit 4+ I. 

(b) POCI. In a second case parallel cylinders are 
placed at random and allowed to freely overlap, but 
the flux is perpendicular to the fiber axes. Note from 
column three that k, is zero and z only appears in the 
denominator of kKn. The k, simulation values listed in 
column two of Table 1, and marked with an asterisk, 
have been taken in the dilute cylinder bed limit. From 
its agreement with the k, simulation values, the aniso- 
tropic scattering (x-0) form of kKn is exact for a 
dilute bed. For the opposite limit of no scattering (SC+ 
1) since each fiber has a small radius (a L) compared 
to the distance for thermal change, it is practically 
isothermal and emits isotropically. As the adjustable 
parameter coefficient A,,, of the i - q term in equation 
(8b) vanishes for cr+l from equation (18), the trial 
efflux also predicts isotropic emission and C&c*/8 is 
the correct two-dimensional isotropic scattering ther- 
mal conductivity [23]. Between these limits kKn from 
Fig. 1 increases monotonically with a, and is at least 

a very good approximation [8]. As typical cryogenic 
fiber bed void fractions are 90% and as at these high 
porosities overlap is not dominant in our model, the 
POCK form of kKn is a reasonable form for the Knud- 
sen void gas conductivity in this particular cryogenic 
insulation fiber bed geometry. 

(c) PROC. Each cylinder is randomly oriented in a 
plane and the cylinder planes of rotation are mutually 
parallel. The cylinders are allowed to overlap freely. 
In a third case the average flux is in a direction parallel 
to the planes, and in a fourth the flux is perpendicular 
across the planes of orientation. Assuming a homo- 
geneous angular distribution of cylinder axes, we 
replace the n, by /?dy,/r in equations (lo), (13), (14). 
(16) and (17) and sum overj by an integration over l’, 
form 0 to n, 

n, = /j’d y,/x O,<)‘,<X (27) 

The coefficient k, is zero in both flux directions leaving 
a monotonic increase of kKn with a from the denomi- 

_$ 2rr’ 

I 
C6 

16+? 
16+n’(l-a) 1 

C6 8 x I.441 

I 8f 1.441(1-G() 1 
-G, 

S+G, 

-G, 
l+G, 

I 

26 

nator. The Knudsen void gas conductivity in column 
six of Table 1 can be obtained analytically in terms of 
a constant G, or G, in each case, 

G =?f I ’ 
c? 

0 
4 

pdc = 0.5985*** (PROCI) 
0 E(1 -c2) 

(28) 

G, =; s I (l-02) 
pdc = 1.441.**(PROC//), 

0 E(1-112) 

(29) 

where E(m) is the complete elliptic integral of the 
second kind [24]. The agreement of kKn for the aniso- 
tropic scattering limit (a-+0), with the simulation 
results [ 191, is obtained again in equivalent dilute beds. 
In the limit of no scattering (a-+1), the trial energy 
efflux (8b) E* = CT* with the linear trial temperature 

(8a) is the exact choice for a dilute bed and the kKn 

are appropriate to compare with equation (1) to 
observe fiber bed structural effects in cryogenic insu- 
lations. 

(d) IOC. For isotropic random orientation each of 
the freely overlapping, solid right circular cylinders is 
placed at random into the bed with an orientation 
independent of those of the other cylinders already 
present. For a homogeneous angular distribution of 
cylinder axes n, is replaced by E sin <, d& d?;,/(2n) and 
the sum over j by integrations over dy, from 0 to 2n 
and d<, from 0 to n/2. 

(30) 

The void Knudsen thermal conductivity in the aniso- 
tropic scattering limit (a+O) gives the coefficient $. 
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This result, first proposed by Derjagiun [25], is known 

to be the exact solution for a dilute bed of spheres. 
The g result agrees with the simulation value of k, 

and is the appropriate solution for a dilute three- 
dimensional isotropic bed of cylinders as well. In the 
isotropic scattering case (cc+l), the 4 coefficient, a 
well-known exact result [22] for an isotropic dilute 
bed of particles, also provides the correct isotropic 
scattering solution of a dilute IOC cylinder bed. It is 
interesting to note that k, for this geometry does not 
vanish, and its 0.5 value is necessary to obtain the : 
limit. Also for any other void fraction, the case of k,, 

in equation (19) or (25) gives an upper bound. 
To demonstrate the effects of the different solid 

dispersions on the Knudsen void gas conductivity the 
dimensionless conductivity kKn/(6C) is plotted versus 
the thermal accommodation coefficient in Fig. 1. 
Curves are numbered in the order they occur in the 

text and the curve numbers are circled. The parallel 
plate Knudsen conductivity, equation (1) and labeled 
0 on Fig. 1, provides a series lower bound on the 
kJ(GC) results we have derived. The Knudsen con- 
ductivity [S] for a bed of overlapping spheres equation 
(2), included for comparison as the granular structure, 
is labeled 0. The dimensionless thermal Knudsen flux 
down along the central axes of a bed of overlapping 
parallel cylinders, from Table 1 and labeled 0 on 

Fig. 1, in parallel transport with the solid, provides a 
horizontal line upper bound for the various geom- 
etries we have considered. The curve labeled 0, which 
provides the kK,/(bC) values for the flux across the 
axes of the same parallel cylinders, always lies well 
below 0. For beds with each cylinder lying in parallel 
planes, but oriented mutually at random relative 
angles, the curves labeled 0 and @ represent the flux 
parallel and perpendicular to the cylinder planes of 
rotation. That cylinders perpendicular to the flux 
block more effectively implies that 0 should lie above 
0. From 0-0 effects of fiber rotation in the plane 
of a dilute fiber bed, where heat transfer is in that 

plane, is demonstrated. But from @ and @ the same 
fiber rotation for flux perpendicular to the fiber plane 
gives a small effect. The curve 0 for cylinder beds with 
three-dimensional isotropy, i.e. each cylinder oriented 
independently at random in three dimensions, has the 
same anisotropic and isotropic scattering limits as the 
three-dimensional isotropic sphere bed 0. However as 
k, is 0.5 and k, is small at 0.038, the three-dimensional 
isotropic cylinder bed curve is nearly a straight line, 
whence the sphere bed equation (2) has a positive 
curvature between the limits. 

This study is focused on fiber and spherical dis- 
persed solid beds and the most useful model curves of 
kJ(dC) seem to lie between 0.5 and 1.5 on Fig. 1. 
For the higher void fractions often met in practice 
(@ - 0.9), the results on Table 1 and Fig. 1 should be 
predictive for cryogenic insulation systems. An over- 
view of Fig. 1 in the anisotropic limit (a-to) shows a 
real diversity in the actual Knudsen conductivities 
with shape, 0-0, and arrangement, Q-0, but even 

for the isotropic case (a-+ 1) significant effects of dis- 

persed solid geometry remain in cryogenic beds. 

Unfortunately the parallel surface equation (1) seri- 

ously underestimates kKn for any CL, but particularly 
at lower a estimates from equation (1) will 
misleading. 

be very 

SUMMARY AND CONCLUSIONS 

One purpose of this paper was to derive various 

forms of the Knudsen void gas thermal conductivity, 

in order to study the importance of solid shape and 
spatial distribution in model fiber beds similar to those 
found in some dispersed solid cryogenic insulations. 
In Fig. 1 the CI priori, variational Knudsen con- 
ductivities of the various solid fiber dispersions are 

compared, along with those of a bed of randomly 
overlapping spheres and the parallel plate model, as 

plots of kKn(fiC)-’ versus the thermal accom- 
modation coefficient. 

1. The POC 11 exact conductivity for parallel con- 

duction provided an upper bound for the dispersions 
considered, while the parallel plate series equation (1) 
gave a lower bound. 

2. The state of the art [l], Knudsen void gas ther- 

mal conductivity equations (la)-(lc) for kKn(SC) ‘, 
where 6 is either the parallel plate separation (mul- 

tilayer insulation), the average pore diameter (fiber or 
powder insulant) or cell diameter (foams), suggest the 
form z(2-a) ’ independent of insulant structure. 
Figure 1 demonstrates kKn(K’) ’ for model cryogenic 
insulations lies in the range 0.5-1.5 and a sensitivity 
to insulant structure exists. Further the parallel plate 
predictions are too low. 

3. The parallel plate equations (la)-( lc) predict a 
very strong variation of kKn(6C) ’ [ = 1(2-r))‘] 
with thermal accommodation a. Figure 1 shows that 
the factor a(2-a)-’ overestimates the decrease in 
kKn(6C) -’ with decreasing LX. 

4. The equation 

k,,(K’)-’ = +f$ 
2 

should assist in a systematic inclusion of insulant 
packing in thermal design. The equations for kk” given 
in Table 1 also apply to high temperature radiation 
heat transfer in the manufacture of fiber reinforced 
ceramics [8, 13, 161. 
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